JET FLOW IN A SHALLOW FLUIDIZED BED

Yu. A, Bueyich, G. A, Minaev, UDC 532.545:532.522.2
and S, M. Ellengorn

A physical model of a steady jet discharging into a fluidized bed in a vertical direction is ex-
amined on the example of plane flow, and the quantities characterizing the exchange of parti-
cles and the fluid phase between the jet and the bed are estimated.

The types of jets observed in fluidized beds are very diverse (see the description of experiments in
[1, 2], for example), but among them one can distinguish two bhasic limiting modes. If the bed is deep and the
initial velocity of the jet, entering in a vertical direction from below, is low enough, then the tongue of the
jet does not reach the free surface of the bed and the jet proves to be unstable, so that a peculiar self-oscil-
lating mode of discharge is realized with separation of the tongue and the formation of a bubble at the end of
each cycle [1, 2]. Conversely, if the bed is shallow or the initial velocity of the jet is high, the jet "pierces"
the bed and the stable steady mode illustrated in Fig. 1 is realized. With intermediate values of the bed
height and discharge velocity certain superpositions of the steady and self-oscillating types of flow are pos-
sible, such as the so-called "local spouting mode™ [1]. Only steady jets are considered below.

In connection with the fact that a representational model of jet flows is essentially absent we performed
a thorough analysis of the known experimental results (particularly those described in [1]) and also set up
special experiments on the discharge of steady plane and axisymmetric gas jets into fluidized beds of differ-
ent heights. The latter made it possible to clarify the physical pattern of the motion, which is required for
the construction of its model.

The delivery of an excess of gas through an opening in the gas-distribution grid leads to the formation
of a stable jet channel whose cross-sectional area increases monotonically with an increase in distance from
the opening. The volume of gas flowing in this channel also increases in comparison with that blown into the
bed owing to the injection of some of the gas from the surrounding spaces of the bed, with this "draining" ef-
fect of the jet leading to a considerable decrease in the amount of gas moving in the bed in the bubble phase.
The penetration of separate particles into the channel occurs in addition, especially noticeable near the grid
and gradually weakening with an increase in height above it. These particles are entrained by the ascending
gas stream, move in it in a mode of pneumatic transport, and are ultimately carried into the space above the
bed (Fig. 1a, b, c).

The abrupt expansion of the jet above the bed leads to a rapid drop in its velocity, which becomes less
than the velocity of particle hovering, and to the radial displacement of particles away from the core of the
jet. As a result the particles fall onto the upper surface of the bed at different distances from the jet, com-
pensating for the loss of particles at this surface due to the slow descending movement of the disperse phase
of the bed in the vicinity of the jet. Such "settling" of the disperse phase leads to the supply of new particles
to the surface of the jet channel, which in turn are entrained by the stream and transported by it to the free
surface.

The distribution of particles over the lower cross sections of the channel is very uneven and has a
minimum at the center of the channel, with the principal mass of particles moving upward in a relatively
narrow "boundary layer® adjacent to the walls (this layer has already been taken into account in [3] in an
analysis of the gas velocity distribution in the jet). As the height above the grid increases this distribution
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Fig. 1. Typical patterns of steady jets discharging into a
fluidized bed. The photographs are arranged in order of
decreasing discharge velocity.

levels out, while the average particle concentration in the jet channel increases. If the bed is not too deep and
the opening through which the jet discharges is large enough, then the indicated concentration at the exit of the
jet from the bed proves to be considerably less than the particle concentration in the compact phase of the
bed. With an increase in the height of the bed and a decrease in the size of the opening the concentration of
particles in the channel becomes comparable with their concentration in the bed and a local spouting mode
sets in (Fig. 1c).

Below we will be confined to an analysis of jets with a low concentration of suspended particles. Inthis
case the pressure drop along the length of the jet channel is considerably less than that over the height of the
compact phase of the bed, so that the pressure atthe channel boundary can be taken as constant in a first ap-
proximation and as coinciding with the pressure at the free surface of the bed. Also neglecting the boundary
layer at the channel walls, we arrive at the pattern illustrated schematically in Fig. 2. There is a region Dy,
occupied by the compact phase of the bed, and a region D3, occupied by the rarefied suspension, with the
boundary between these regions being formed by the surface AB of the jet channel and the free surface BC,
The point B separating these surfaces in Fig. 2 can be determined arbitrarily as the point at which the veloc-
ity of the disperse phase normal to the surface is reduced to zero.

Neglecting the inertia of the gas and the shear stresses caused by the molecular viscosity of the gas
and the chaotic pulsations of the two phases, we can write the equations of motion in region Dj in the form

—yp—on=0, diviev)=0, u=v—w, p=1-—eg,
od, (Wwy) w = —yP -+ ou—pd g, div(pw) =0, o=a(e) (1)

These equations differ from those obtained rigorously in [4] by the presence of a term containing the pressure
P of the disperse phase. The latter is due mainly to the effect of the spreading forces in the bed, which ac-
company the "rolling" of the particles over one another and are very important for disperse systems which
are close to being tightly packed [5, 6]. It is clear that in the general case P represents some function of the
porosity and the other parameters. The first equations in (1) describe the filtration of gas in the mobile po-
rous substance formed by the moving particles and they coincide in form with the equations in [7], used to *
describe jet flows in an immobile granular bed. In a first approximation it is admissible to take the porosity
in region D; as constant; then P must be considered as some unknown function which is subject to determina-
tion from the solution of the problem.

Let us discuss the boundary conditions imposed on the solution of (1). The first group of conditions fol-
lows from the requirement of approximate constancy of the pressure at the interface ABC, the condition of
nonpenetration of the outer boundary x = L, which can consist either of the wall of the apparatus or of the
surface of symmetry separating the regions of influence of neighboring jets (see [7]), and from the require-
ment of constancy of the flow rate of the fluidizing gas through the gas-distribution grid. The mathematical
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Fig. 2. Sketch explaining the
statement of the problem.

representatmn of these conditions can be formulated in complete analogy with [7]. By introducing the pres-

sure p’ and the gas velocity u’ undisturbed by the jet

PP =au(H—2) = pdyg (H—2), ud=0, w=u (2)
and the excess pressure ¢ =p = po, we obtain the problem
Ap=0, u=u’+u, u=—alyg, (3)
9 =0 (z=0) Yo =0 (x=1L); 9p=—au?(H—2) (rcABC),
0z Aax

the solution of which allows one, in principle, to find the fields of pressure and relative gas velocity in the
spaces between particles in the presence of a jet.

The velocity and pressure of the disperse phase must be determined from the solution of the supple-
mentary boundary-value problem, which follows from (1). The boundary conditions for this problem are ob-
tained from the requirements of continuity of the normal components of the fluxes of particle mass and mo-
mentum at the boundary ABC, which represents the free boundary with respect to the disperse phase, and the
reduction to zero of the normal component of the particle velocity at the gas-distribution grid and at the
outer flow boundary x = L, We have

pdy (Wy) w = -——VP +au—opd g, divw =20,
w,=0x=L); w,=0(=0; P=0(r¢cdB), . (4)
pw, = Qs (), — P pdlwﬁ = dlna (l‘) (I‘ € BC)

Here wy is the normal component of the velocity, while Qg(1} and dilig(r) are the normal volume and
momentum flux densities of the particles arriving at the surface BC from the space above the bed.

The problems (3) and (4) can be considered as independent if the unknown boundary ABC is roughly ap-
proximated by some known surface.* In the solution of (3) it is natural to neglect the departures of BC from
the horizontal plane z = H and the dependence on z of the coordinate x = B(z) which describes the surface
AB. Then the problem (3) is easily solved by the method of separation of variables. For a plane jet we have

0= — 8e DH \ COs 0,2 exp (— @, x) + exp[— e, (2L — x)
w? ded (2n—1)*  exp(—o,R) - exp[—0, (2L —R)] '
W 4 00 v COsS®,z - eXp{— @, x) —exp [— 0, (2L — x)] ’
* 7 a=d 201 exp (—®,R) -+ exp [— o, (2L — R)]

(8)

2

4 " E sinw,z exp (— ©,x) -~ exp [— e, (2L — x)]
2n—1 exp (— @, R) 4 exp[— o, (2L — R}
(@n—D=n
2H '

O, =

*The shape of the surface BC can be found in principle from the solution of (4), The shape of the surface AB
must be determined from the solution of the problem of internal flow in the jet channel.
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Fig. 3. Dimensionless gas velocity at exit from bed in vicinity
of jet (curve 1) and velocity of inflow of gas toward base of jet

along gas-distribution grid (curve 2) as functions of the dimen-
sionless horizontal coordinate.

Fig. 4. Distribution of horizontal components of relative gas
velocity and particle velocity at surface of jet channel:

1) &= [l-ix/uo [;v 2) &= lWx/W* l.; 3) &= Qu/uoHS; 4) o=
Qp/wxHp. '

Adding the last two series, in the -case of a single jet ( L— %) we obtain
w4 eqy {1 —exp (—nB))® + dexp (—af) sin® (ng/2)}
* n [1 + exp (— aig) — 2exp (—a§/2) cos (nL/2)]°

. 6
Warctg SR=TERS@YD) . xRz ©
a l—exp(—mE) H H
A study of Egs. (6) shows that there is considerable injection of gas into the jet. The dependence on the
dimensionless horizontal coordinate ¢ of the quantities uy/u’| z=p and ug/u’ |, =¢ obtained from (6) is
shown in Fig. 3. The first of these characterizes the relative velocity of the gas at the exit from the fluidized
bed and the second characterizes the inflow of gas toward the base of the jet channel along the gas-distribu-
tion grid. It is seen that regardless of its horizontal size R the jet exerts a considerable influence on the

internal hydrodynamics of the bed, extending to distances having the order of the bed height H.

The relative velocity of the gas at the boundary x = R of the jet channel is of particular interest. From
(3) and (6) we have

2 ng

uInctg < U,)x=r = 0. (7

Upls=r = u.;lx=R =

This equation also determines the density of the gas stream inthe jet due to its motion relafive to the dis-
perse phase. For a plane jet the total volumetric flux of injected gas entering the section of the jet channel
from the grid to the level z and connected with the relative gas flow equals

2z

’ ol /4
16u’He 16uHe 7 ng 4 ng
= e = = —— ) — L —_— —L e meme m—— .
2Q, (?) % ‘S‘ Uy)emr d2 ; j In ctg tdt " [L ( 2 ) ( 2 ) ( 2 T )] (8)
0 0
In particular, :
16G
2Q, (H)= —— u’He, G~ 0.916. (9)
n .

Here L{t) is the Lobachevskii function and G isthe Catalan constant. The dependence of the quantity ux
from (7) and Qy from (8) on ¢ is shown in Fig. 4. It is seen that the gas flux density in the jet channel de-
creases monotonically with an increase in height above the grid.

The solution of problem (4) is complicated by the fact that neither the shape of the boundary surface
ABC nor the functions Qg(r) and Hg(r) characterizing the arrival of particles at the free surface of the bed
are known. However, an approximate estimate can be obtained for the particle velocity at the boundary of the
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jet channel without resorting to an exact solution of (4). Using (3) and the definition of uy in (2) and integrat-
ing the first equation of (4) along the streamlines of the disperse phase, we obtain the following analog of the
Bernoulli equation:

P+o+F)=2¢(H—2)—

d1
where F() is some function of the stream function ¥ of the disperse phase which is reduced to zerc far

from the jet. According to the boundary condition in (4), at the boundary AB the quantity P is equal to zero,
so that from (10) we get the estimate

Ofemr = [2gH (I—0) + F (W'’ ~w, VI—C, @, =V 2gH . 1l

The approximate equality in (11) is obtained with neglect of F(y), which is justified for the lower and central
parts of the channel (1 —¢ ~ 1), into which most of the mass of injected particles enters.

Because of the inertia of the particles the streamlines of the disperse phase deviate from the stream-
lines of the flow whose velocuty components are determined in (5) and which is superimposed on the undis-
turbed flow of a gas with ux =0 and uz =u’, In obtaining order-of-magnitude estimates of the velocity com-
ponents of the disperse phase at the channel boundary these deviations, like the influence of the forces of ad-
hesion between particles, can be neglected. Then from (7) and (11} we obtain the expressions

— ag al | mE T2
Wylrmp ~ —w, V1—7 Incig 1 (lnzctg i + ) .

— -y
w,sz———z”f—w*v1—c(ln2ctg—“f—+—:‘l~) . (12)

The flux of the disperse phase within the section of the jet channel from the grid to the level z turns
out to equal

2z

4 S
c V1I—fInctgnt/d
2 ~—2 lewr dz = 2w, H
Q@ e _( WelsoR G2 = S0P S (In?ctg nt/4 -+ n2/4)'* (13)
0 0
In particular, the fotal volumetric flux of particles into the jet is
V1—tinctgnt/4
2Q, (H) =~ 2w, Hp df =~ 0.77w Hp. (14)

(In? ctg ut/4 + n2/4)'?

The dependence of wx from (12) and Q from (13) on ¢ are also presented in Fig. 4. We note that the
quantity Q p» Which characterizes the 1ntens1ty of particle circulation induced by the gas jet, is proportional
to H¥?, The total gas flux into the jet channel is made up of the relative flux 2@y determined in (8) and the
flux corresponding to flow with the velocity of the disperse phase. Thus,

20, (2) = 2Q, (2) - —f« 2Q, (2). (15)

Let us analyze qualitatively the dependence of the dimension R and the gas velocity V in the jet chan-
nel on the vertical coordinate, using for this purpose the conditions of integral balance of volume and impulse
in the channel cross sections. The equation of volume balance has the form

(EVYR--(p"(V—=U)> R=V,Ry+ Qs+ Qs (18)
where the angular brackets denote averaging over a cross section of the jet channel.

Similarly, the balance equation for the vertical component of the impulse has the form

dy (V2 R+dy (o' (V —UP*> R=dViR, —diTl,, (7
; z 9
I In ctg nt/4
1] - vpd?z = — pw? H ,
h@=e f O de = =5 00, Y In? cig nf/4 + n?/4
9 0

where the vector sum of the initial impulse of the jet and the impulse imparted to it by the particles (the in-
jected gas flows into the channel normal to its boundary, so that the vertical component of the impulse im-
parted by it is approximately equal to zero) figures in the right side of (17). We note that in (16) and (17) it is
assumed that p' < 1 and that the dynamic relaxation time of the particles is small; therefore, one can as-
sume that the particle velocity is equal to the local gas velocity after subtraction of the velocity of floating of
a single particle in a uniform stream. Equations (16) and (17) must be supplemented by the condition of parti~
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cle balance in the jet channel:

(' (V—U)> R =0Qp- (18)

The calculation of the average quantities in (16)-(18) requires knowledge of the details of the particle
distribution over the cross section of the jet channel and of the gas velocity profile in it. With the intention
of obtaining order-of-magnitude estimates, we take

(VY ~EV, (&VE) ~eV3

henceforth understanding €' and V to be averages over the channel cross section of the porosity and gas
velocity.

Using the inequality p' =1 — & « 1, we then rewrite (16)-(18) in the form
VR—VyRy, ~Q;,
4 viw—_uq, w=1Te

0 o %p
where W is some effective velocity characterizing the impulse imparted to the jet channel by the injected
particles, and which depends, of course, on z. The solution of (19) gives

14 d U—w Q Q dg  Q \™*
——— A ]+ 1 2 ) (1+ ! + 1 P \) s
Vl) ( do VO VORO I{ORO do VORO

R Q; Q d  Q, ) ( q U—-W Q, )_I.
o~ (v ) (v ) (M vk 20
Using (20) and the other equations it is not hard to obtain the dependence of the average gas velocity in

the jet and to construct the channel profiles for different values of the parameters. As follows from (20), the
quantities V/V, and R/Ry are determined by the independent dimensionless parameters

d u—-w Q Qp

d ' Ve | VoR . ViR
the physical meaning of which is obvious.

If the initial velocity of the jet is high, so that one can take U~ <V, wy < Vo, u’H « VyRy, and
wxH « VyRy, then Egs. (20) are considerably simplified. We have

|4 4 Q )“ R 4 Q
~f1+ P . ~14 — 2. (21)
Vl) ( dO VORO RO do VORO

The jet profiles for different values of Vy and wx are easily obtained using the Qp( z) curve in Fig. 4,

VPR —ViRy ~ —

, (19)

In conclusion, we note that the analysis of axisymmetric jets does not introduce complications of a
fundamental order, but the purely computational difficulties prove to be very considerable. Therefore, such
an analysis, like the study of the constrained flow formed by a system of plane or axisymmetric jets, can
comprise the subject of an independent report.

NOTATION

dg, di, gas and particle densities; F, unknown function in (11); g, acceleration of gravity; H, height of
bed; L, external dimension of bed; P, pressure of disperse phase; p, gas pressure; Qu, Qf, Qp, half-values
of relative gas flux and of total volumetric fluxes of fluid and disperse phases into jet, respectively; Qg,
volumetric flux of particles onto free surface of bed; R, half-width of jet channel; U, velocity of floating; u,
relative gas velocity in spaces between particles; V, gas velocity in jet; v, gas velocity in spaces between
particles; W, wx, characteristic velocities introduced in (12) and (20); w, velocity of disperse phase; x, z,
coordinates; o, coefficient to resistance force in (1); €, €, porosities in compact phase of bed and in jet chan-
nel; ¢, ¢, dimensionless coordinates determined in (6); Ig, Ilp, functions introduced in (4) and (19), respec-~
tively; p, p', volumetric particle concentrations in compact phase and in jet channel; ¢, excess pressure; ¥,
stream function of disperse phase; wp, eigenvalues. Indices: zero superscript, gas flow in the bed undisturbed
by the jet; zero subscript, initial parameters of the jet.
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EXPERIMENTAL DETERMINATION OF THE
STATISTICAL CHARACTERISTICS OF GAS
MOTION IN A FLUIDIZED BED

N. B. Kondukov, L, I. Frenkel', UDC 532.546:519.24
and B. V. Pankov

A method is proposed for the determination of the statistical characteristics of the gas motion
in a fluidized bed by the pneumatometric method. The dependences of these characteristics on
the parameters of the process are obtained.

The experimental determination of the statistical characteristics of any random process encounters an
important difficulty consisting in the fact that the measuring system distorts the fluctuations of the parame-
ter under study because of the influence of its frequency properties. In many cases it is impossible to recon-
struct the actual form of the realization, even when one has data on the dynamic properties of this system.

However, the problem of the experimental determination of the statistical characteristics of the flue-
tuations of any parameter can be solved without reconstructing the actual form of the realization. The
methods of mathematical statistics [1] allow one to find them from the statistical characteristics of the dis-
torted realization, taking into account the dynamic properties of the measuring system.

For the measurement of the instantaneous gas velocity in a fluidized bed we chose the pneumatometric
method, which is distinguished by the simplicity and accessibility of the fabrication and calibration of the
pickups and the reliability in operation. But when using this method one must allow for the distortions intro-
duced by the measuring system, which can be divided arbitrarily into two types. The first type is the distor-
tions connected with the presence of solid particles in the stream. The average gas velocities calculated
from the readings of the pneumatometric probe prove to be overstated {2, 3, 4]. The second type of distor-
tions is connected with the inertia of the measuring system and can be allowed for by an experimental deter-
mination of its amplitude —frequency characteristic curve.

A low-inertia Pitot —Prandtl tube, whose length together with the connecting channels was 150 mm and
whose diameter was 2 mm, was used in our experiments. A membrane differential manometer made in con-
junction with the tube served as the secondary instrument. The membrane movements were measured by an
electronic system [5] using a 6MKh1S mechanotron. The pulsations were recorded on photographic film by a
light—be‘am oscillograph. The graphs were quantified with a Siluet automatic reader. The data obtained from
the Siluet instrument in five-track telegraphic code were processed in an Odra-1204 computer. The ampli-
tude—frequency characteristic curve of the measuring system was taken by the method of supplying a unit
jump to its input. The numerical values of the amplitude—frequency characteristic curve are as follows:
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